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Abstract

PHYSLIB is a C++ class library for general use in computational physics applications. It
defines vector and tensor classes and the corresponding operations. A simple change in the
header file allows the user to compile either 2-D or 3-D versions of the library.
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Preface

C++ is the first object-oriented programming language which produces sufficiently effi-
cient code for consideration in computation-intensive physics and engineering applica-
tions. In addition, the increasing availability of massively parallel architectures requires
novel programming techniques which may prove to be relatively easy to implement in
C++. For these reasons, Division 1541 at Sandia National Laboratories is devoting consid-
erable resources to the development of C++ libraries.

This document describes the first of these libraries to be released, PHYSLIB, which de-
fines classes representing Cartesian vectors and (second-order) tensors. This library con-
sists of the header file physlib.h, the inline code file physlib.inl, and the source
file physlib.C. The library is applicable to both three-dimensional and two-dimension-
al problems; the user selects the 2-D version of the library by defining the symbol
TWO_D in the header file physlib.h and recompiling physlib.C and his own code.

Alternately, system managers may wish to provide duplicate header and object modules of
each dimensionality.

This code was produced under the auspices of Sandia National Laboratories, a federally-
funded research center administered for the United States Department of Energy on a non-
profit basis by AT&T. This code is available to U.S. citizens and institutions under re-
search, government use and/or commercial license agreements.

Federal agencies, universities, and other U.S. institutions who wish to support further de-
velopment of this code and its sister codes are encouraged to contact Division 1541, Sand-
ia National Laboratories. Division 1541 welcomes collaborative efforts with qualified
research institutions.

The PHYSLIB library is © 1991 Sandia Corporation.
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Summary

PHYSLIB defines the following classes:

class Vector Cartesian vectors

class Tensor Cartesian 2nd-order tensors

class SymTensor Cartesian 2nd-order symmetric tensors
class AntiTensor Cartesian 2nd-order antisymmetric tensors

Methods that are defined for these classes include the following:

Dot and outer products

Cross products for vectors

Other arithmetic operations

Duals (dot or double dot product with the permutation symbol)
Trace of tensors

Transpose of tensors

Determinants and inverses of tensors
Symmetric and antisymmetric part of tensors
Scalar invariants of tensors

Norms

Colon operator (scalar product of tensors)

Deviatoric part of tensors
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Introduction

1. Introduction

Almost every branch of theoretical physics makes use of the concepts of vectors and ten-
sors. Vectors are conceptually simple; they are quantities having both magnitude and di-
rection, such as the velocity of a particle. Tensors are conceptually more difficult. They

represent rules that relate one set of vectors to another, and they appear in many physical
formulae.

Division 1541 at Sandia National Laboratories recently began work on a new computer
code, RHALE++, which calculates the behavior of materials subjected to strong shock
waves. The equations describing the physics of strong shocks are vector and tensor equa-
tions. In the past, great effort has been required to correctly translate these equations into
computer code.

This document briefly reviews the mathematics of vectors and tensors; discusses the basic
difficulties in translating vector and tensor equations into computer code; and describes
how a new and very promising computer language, C++, has been used to alleviate these
difficulties, thereby producing reliable, reusable, and transparent computer code at a much
reduced cost in programmer effort.

1.1 Vector and Tensor Operations and Notation

We briefly review the basic concepts and language of vectors and tensors. A more com-
plete discussion can be found in [2].

1.1.1 Vectors

A vector is a physical quantity such as velocity that has both a magnitude (“five hundred
km/sec”) and a direction (“‘towards the northeast”). It may be written as a lowercase sym-
bol with an arrow over it, such as v. Quantities such as temperature or mass that have

magnitude but no direction are called scalars and are represented by lowercase symbols
without an arrow, such as a.

The magnitude or norm of a vector & is written as |4l and is a scalar, while its direction

may be written as a. The direction of a vector is itself a vector with magnitude 1 (called a
unit vector).

A vector may be multiplied by a scalar. The result is a vector with the same direction as

the original vector and with a magnitude equal to the product of the scalar and the magni-
tude of the original vector. That is,

if b=cithen |bl = lcllal and b = +z (1)

If ¢ <0, the resulting vector has the opposite direction from the original vector.

11



Introduction

Vectors may be added to or subtracted from each other; they obey the same algebraic rules
as real numbers under addition and subtraction. Vector addition may be visualized by pic-
turing each vector as an arrow with a length equal to its magnitude, as illustrated below:

Figure 1. Addition of Vectors

1\
+
S

S

a
The opposite of a vector is a vector with the same length but in the opposite direction.

Vectors may not be multiplied in the same sense as real numbers. However, several opera-
tions exist which are distributive and which are therefore spoken of as “products”. The in-
ner product (or dot product) of two vectors is a scalar and is written

Geb @

It is defined as the product of the magnitudes of the two vectors and the cosine of the angle
between them, that is,

v

aob = |allblcoss,,. 3)
\ eab

a
a

Thus, the dot product is zero if the vectors are perpendicular. The dot product is distribu-
tive and commutative, that is,

Ge (b+e) = deb+aed (Distributive law) @)

eh=hed (Commutative law) (5)
The outer product of two vectors is a tensor; it is discussed below.

1.1.2 Tensors

A tensor is a rule that turns a vector into another vector, and it is represented symbolically
by a boldface capital letter, such as A . We write

&=Ab (6)

12



Introduction

to indicate that when the tensor A is applied to the vector b, it returns the vector &. Not all
rules that turn vectors into other vectors are tensors; a tensor must be linear, that is, it must
be true for all z, », and ¢ that

A

A@G+b) = Ad+Ab D
and
A (c2) = cAd. )]

It is customary to regard the vector & in Equations (6) as the product of the tensor A and
the vector 5. We say that the vector b is left-multiplied by the tensor A . It is also possible
to write expressions of the form

¢ =bA ©)
in which the vector b is right-multiplied by the tensor A . If

Ad =aB (10)
for all vectors @, we say that A is the transpose of B and write

A=B. (11)

Tensors may be added and subtracted according to the usual algebraic rules. Addition is
defined such that

A=B+C iff Aa=Ba+Ca foralla (12)
The product of two tensors is defined such that
A = BC iff Ad = B(Ca) forall & (13)

The outer product of two vectors is a tensor and may be written

® b (14)

Qv

A:

It is defined by

A=a®b iff Ac= (het)a foral ¢ (15)

[

Note that the outer product is not commutative, unlike the inner product, since

EY Ry T
i®b = (b®a) . (16)

Many derived quantities in physics are expressed as tensors. For example, we observe in

the laboratory that a reflective surface exposed to a set of light sources feels a force which
depends on the orientation and area of the surface. 1If we form a vector 5 whose magnitude

13
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is equal to the surface area and whose direction is perpendicular to the surface, we find
that the force experienced by the surface is given by

f =P} (17)

where P is a tensor (the radiation pressure tensor) which depends only on the intensity and
location of the light sources relative to the location of the reflective surface.

Likewise, consider a body subjected to deformation. Let the displacement between two
nearby particles in the undeformed body be represented by the vector & and the displace-
ment between the same two particles after deformation be represented by the vector u'.
The two vectors are related by the expression

w = Ji (18)

where J 1s called the Jacobian tensor. We note that J may be different at different points in
the body.

1.1.3 Symmetric and Antisymmetric Tensors
Many tensors important in physics are symmetric; that is,

AT=A (19)
Likewise, there are important tensors which are antisymmetric, having the property

AT = —A. (20)

If a tensor is known to have one of these symmetry properties, calculations involving that
tensor can usually be simplified. In addition, it is sometimes useful to split a full tensor
into symmetric and antisymmetric parts via the formulae

Sym(A) = %(A +A7 (21)
Anti(A) = %(A _A" (22)

It 15 easily verified that these two tensors have the indicated symmetry properties and that
A = Sym(A)+ Anti(A).

1.1.4 Vector and Tensor Components; Indicial Notation

Computers are unable to handle vectors and tensors directly. Their hardware is designed to
add, subtract, multiply, and divide representations of real numbers.

Fortunately we can represent vectors and tensors as sets of real numbers. However, to do
so, we must establish an arbitrary frame of reference. We do this by selecting three mutual-
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ly orthogonal directions %, 9, and 2. These correspond to the x, y, and z axes of a Cartesian
coordinate system. We can then express any vector in the form

a=uax+a,y+a,z (23)

The three numbers a|, a,, and a, (the components of the vector) are real numbers and can
be processed by a computer. Using Equation (23), we can represent any vector operation
as a sequence of operations on sets of real numbers. We use the symbol g, to represent the
set of real numbers «,, a,, and as,.

Some computers are optimized to perform calculations on sets of real numbers; computer
scientists refer to these as vector computers, but the word “vector” is not being used in the
sense understood by physicists.

We can write any tensor in the form

A=A (R®) +A,(3®F) +A;(A® %)
+ Ay R +A,(I®F) +A4,, (G ®2) (24)
+ Ay (G®R) +A,(E®P) + A, (3@5)

Thus, a computer can treat a tensor as if it was an array of nine real numbers. These real

numbers are spoken of as the components of the tensor. We represent this set of numbers
by the symbol 4.

We thus have a way to handle vectors and tensors on computers, but at a price: we must re-
place each vector and tensor by a set of real numbers and each vector or tensor operation
by a (possibly extensive) sequence of operations on sets of real numbers. This sequence of
operations is written using indicial notation. For example, the inner or dot product of two
vectors is written in symbolic notation as

F=2adeb. 25)

It can be written in indicial notation as

3
r = Zaibi. (26)

where a; and b, are the components of the vectors & and . Proofs of the equivalence of

the symbolic and indicial representations of vector operations will not be presented in this
report.

1.1.5 Einstein Summation Convention

Sums over all values of an index, such as Equation (26), are so common that it is custom-
ary to adopt the Einstein summation convention. Under this convention, any term in which

5
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an index is repeated, such as a.p

b, 1 interpreted to mean a sum over all values of the index
i. That is,

3
a;b; (Einstein convention) < Zaibi (ordinary usage) 27

i=1
If more than one index is repeated, we have a multiple sum, e.g.,

33
a,-B,-jcj (Einstein convention) @Z Za,-Bijcj (ordinary usage) . (28)

i=1 j=1
We use the Einstein summation convention throughout this report.

1.1.6 Dimensionality

Physical space is three-dimensional, and the foregoing discussion reflects this fact. How-
ever, there are many physical situations where a high degree of spatial symmetry permits a
simplified treatment of vector and tensor calculations. RHALE++ therefore has been writ-
ten in 2-D and 3-D versions. In the 2-D version, one assumes either plane symmetry or
axisymmetry.

Plane symmetry represents the case in which there is perfect translational and reflective
symmetry along the # direction. Axisymmetry is the case in which rotational and reflective
symmetry exists around an axis in the z direction. In either case, certain components of
tensors are guaranteed to be zero in the calculations performed by RHALE++ and similar
programs.

To take advantage of this, the PHYSLIB library can be set up for either normal 3-D calcu-
lations or 2-D calculations. To set up PHYSLIB for 2-D calculations, one defines the mac-
ro TWO_D at the start of the file phys1ib. h; to set up for 3-D calculations, this macro is
left undefined.

The library code contains compiler directives that test this macros and compiles different
portions of the code depending on whether the macro is defined. Thus, when a 2-D pro-

gram is being compiled, the tensor components that are guaranteed to be zero can be omit-
ted, saving memory and computation time.

In addition, an integer constant, DIMENSION, is set to the number of dimensions (2 or 3).

16
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1.2 Object-Oriented Programming and the C++ Language

One of the characteristics of computational physics programs is their growing complexity.
It is not now uncommon for a production code to exceed one hundred thousand lines in
length when written in traditional programming languages such as FORTRAN. Such huge
codes are also found in the areas of advanced graphics and operating systems.

Large codes are extremely difficult to manage. To alleviate this problem, one has to rely
on a coherent, well-organized programming style. Programming style includes techniques
that do not change the basic calculations performed by a program and which might not
even alter the machine language translation.

The most obvious element of style is the incorporation of comments and indention. Com-
ments are sections of text that the compaler is instructed to ignore, but which convey clari-
fications and explanations to a human reader. Good programmers make extensive use of
commenting, especially in older languages; it is not uncommon for a well-written FOR-
TRAN program to consist of 50% comment lines. Indention is the intelligent use of white
space (blanks, tabs, and empty lines), which are ignored by the compiler, to indicate pro-
gram structure. It 1s also an important feature of good FORTRAN coding, where indention
helps delineate the structure of DO loops and IF-THEN constructs.

Unfortunately, commenting and indenting alone are not sufficient to render a code trans-
parent to the human reader. Modern programming languages therefore include grammar
that facilitates block-structured programming. Block-structured programs are broken
down into logical units, each of which is relatively easy to understand. For example, itera-
tive loops are written nowadays using a specific grammar that indicates that the loop is a
logical unit, GOTO statements are generally avoided, since they tend to blur the bound-
aries of logical units. An important part of block-structured programming is the care with
which the programmer breaks the code down into relatively small subroutines, each of

which is easy to understand, and builds a tree of subroutine calls to implement his algo-
rithm,

Block-structured programs may be written either in a top-down or a bottom-up fashion. In
top-down programming, one writes a program at the top level first, using calls to as-yet
nonexistent subroutines to represent major parts of the calculation; the first level of sub-
routines is then written the same way, writing each subroutine as a sequence of calls to
lower-level subroutines, and so on. In bottom-up programming, one builds the lowest-lev-
el subroutines first, then combines these into somewhat higher-level subroutines, and so
on. Both approaches have their merits.

The most recent trend in programming style is towards object-oriented programming.
Conventional computers are sequential; a single processor steps through a program, carry-
ing out one task at a time. Programs written in traditional programming languages there-
fore support the model of a program as a sequence of tasks. This is known as procedural
programming, because a sequence of procedures is being carried out,

17
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Modern supercomputers are not purely sequential. In particular, vector processors such as
Cray or Convex supercomputers process entire blocks of data in an assembly-line fashion.
Massively parallel computers such as MIMD machines have many processors which can
operate independently. For such computers, the sequential model is not ideal. Instead, one
uses an object-oriented approach in which the program is though of as a set of interacting
data objects. This approach has proven to be fruitful even on traditional sequential com-
puters. It seems to mesh well with the concept of block-structure programming; not only 1s
code divided into logical units, but so is data. Closely related to the concept of object-ori-
ented programming is the concept of data abstraction. This is the notion that a data struc-
ture should be treated as a coherent unit wherever possible, with only a few routines
accessing its individual components.

C++ is the first efficient high-level language with object-oriented capability to become
widely popular. Because well-written C++ code approaches the efficiency of conventional
C coding, C++ may prove to be the language of choice for large scientific computing
projects. A description of the C++ language is beyond the scope of this report. However,
we briefly describe the advantages of C++ below.

The definitive feature of C++ is the class [1]. This is essentially a programmer-defined
data type that supplements the standard data types (such as int, float, or double) that
are part of the language. A class is declared, usually in a header file, at which time the
compiler knows its characteristics; individual variables or instances of the class may then
be declared by the programmer.

1.2.1 Data Abstraction

A class declaration typically includes data members and specifies member access rules.
The data members are a set of floating numbers, integers, pointers, or instances of simpler
classes. For example, a class representing complex numbers would probably contain two
floating variables as data members: one for the real and one for the imaginary part of the
complex number. Each time a variable of a given class is declared, enough memory is set
aside to hold its data members.

Classes enforce data abstraction. Generally speaking, the data members of a class are di-
rectly accessible only to a set of functions enumerated within the class definition. These
functions are the only place where an instance of a class is not viewed as a coherent object.

The PHYSLIB library is built around the concept of data abstraction.
1.2.2 Special Member Functions and Dynamic Memory Management

The special member functions of a class are utility functions that create, destroy, or assign
values to an instance of a class. Thus, whenever a class variable is declared, a constructor
function is called to initialize the object. Likewise, when a class variable goes out of scope
and is no longer needed, a destructor is called to do any necessary cleanup before its mem-
ory is freed. This makes it possible to carry out sophisticated dynamic memory manage-
ment in a transparent manner. For example, a large array of floating numbers can be
represented by a class with constructor and destructor functions. The constructor func-
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tions, which are automatically called when a variable of the array class is declared, can al-
locate the appropriate amount of memory. The destructor, which is automatically called
when the variable goes out of scope, can return the memory to the system. The program-
mer sees none of this; he only writes a constructor and destructor function, and the compil-
er sees to it that they are called at the appropriate times.

PHYSLIB does not make use of such memory management mechanisms, but future re-

ports will discuss how memory management is carried out in more sophisticated classes
used in RHALE++.

If a class has no constructor functions, the compiler simply allocates memory for the data
members whenever an instance of the class is declared. Likewise, if a class has no destruc-

tor function, the compiler simply frees the memory allocated for an instance of a class
when 1t goes out of scope.

Other special member functions may be declared to assign values to an object. For exam-
ple, an instance of an array class would need to free its old storage area before allocating
new memory to receive a new value. If no assignment function is declared for a class, the
compiler simply copies the values of all the data members when an assignment is made.

1.2.3 Function and Operator Overloading

When data abstraction is implemented in less sophisticated programming languages, the
code tends to dissolve into many calls to a few privileged routines that manipulate individ-
ual components of the various data structures. Many of these routines implement distinct
operations on the data structures that could just as well be represented by arithmetic oper-
ators. For example, if data structures representing complex numbers are used in a C pro-
gram, there will be many calls to functions that implement complex addition and
multiplication.

The C++ language permits programmers to overload the standard set of operator symbols.
For example, the programmer can declare that the ‘*’ operator represents complex multi-
plication when applied to complex variables. This adds a new context-dependent meaning
to this symbol. The compiler can distinguish whether the ‘*’ represents ordinary floating-
point multiplication or complex multiplication by examining the type of its operands.

When an overloaded operator is used in this manner, the compiler replaces it with a call to
the appropriate function defined by the programmer. Thus, the actual machine code gener-
ated is not much different than that described above for a C program. However, the code

the programmer writes is much more aesthetically pleasing; and, when another program-
mer is trying to read and understand the code, aesthetics 1s everything.

The C++ language permits programmers to overload function names as well as operators.
Every function declaration includes the argument list, as with ANSI C. However, more
than one function with a given name can exist if they have different argument lists. When
one of the functions is called, the compiler selects the correct function based on the types

19
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of the arguments. If a function call has an argument list that does not match any function
by that name, the compiler reports an error.

Consider this example of a C code:

#include <math.h>
#include "complex.h"
main () {
struct Complex a = {3., 2.5}, b = {2., 0.}, c;
¢ = CSgrt(CAdd(CMult(a,a), CMult(b,b)));
fprintf ("The result is %f, %f\n", c.Real, c.Imag);

}

This short program evaluates and prints a complicated complex expression. Note the many
function calls needed to implement data abstraction.

In C++ one might have

#include <math.h>
#include "complex.h"
main () {
Complex a(3., 2.5), b(2., 0.), c;
c = sgrt{a*a + b*b);
fprintf ("The result is %£, %f\n", c.Real(), c.Imag());
}

This illustrates how the function calls have been replaced by more transparent operator
notation. The actual machine code generated by the compiler replaces the operators with
the appropriate function calls. In addition, the sqrt () function has been overloaded; the
two versions are double sqrt (const double) and Complex sqgrt(const
Complex). The first version takes and returns floating point numbers, while the second
takes and returns complex numbers. In the program above, the second version has been
used, which the compiler correctly recognizes from the fact that a*a + b*b is an ex-
pression with type Complex.

20



- The-PHYSLIB Library

2. The PHYSLIB Library

The PHYSLIB library consists of three files: a header file, physlib.h; an inline func-
tion file, physlib.inl; and a C++ source file, physlib.C.

The header file contains C++ code that defines the four classes described below. It must be
included at the start of any C++ program that wishes to use these classes. The header file
in turn includes the inline function file, which contains additional C++ code to define the
various operator overloads and methods that are defined for the PHYSLIB classes. The
source file contains a few large functions that are not appropriate for inlining, and it is
compiled and linked with the users’ code.

Inlining is a way to reduce computation time at the cost of increased memory usage. An
inline function is not actually called whenever it is referenced; instead, a local copy of the
function body is inserted in the calling routine by the compiler. This eliminates the over-
head associated with making a function call and permits global optimizatiens (such as
vectorization) that are normally inhibited by function calls. The trade-off is that there are
numerous local copies of the function in the code rather than one global copy. If the func-
tion is very simple and is called many times, as is usually the case for PHYSLIB func-
tions, the savings in computation time are worth the increase in memory usage.

In each case, the reference frame is implied by the values used to initialize the vectors and
tensors in a calculation. In addition, it is assumed that all floating numbers are represented
in double precision. This is wasteful on intrinsically double-precision machines such as a
Cray; the Cray version of the library will replace double with float everywhere.

2.1 class Vector

This class represents Cartesian vectors, which are quantities having both magnitude and
direction.

Symbolic Notation: & Indicial Notation: a,

2.1.1 Private Data Members

double x; X component of vector (a,)
double y; Y component of vector (a,)
double z; Z component of vector (a,)

The Z component is required even in the 2-D version of the library. This is because
RHALE-++ and some other finite element codes use a rotation algorithm that requires vec-
tors with Z components.

2]



The PHYSLIB Library

2.1.2 Special Member Functions

Vector (void) ;

Sample code:

Vector a; // Default constructor called
// when a is declared

This is the default constructor for instances of the Vector class. It does nothing
to initialize the vector. It is declared only to let the compiler know that initializa-
tion can be skipped.

Vector (const double, const double, const double);

Sample code:

Vector a(5., 6., 2.);

Construct a vector with the given components.

Vector (const Vector&) ;

Sample code:

Vector a;
Vector b = a; // Construct and initialize

This is the copy constructor for objects of class Vector. It is defined mainly to en-
hance vectorization on CRAY computers.

Vector& operator=(const Vector&);

Sample code:

Vector a, b;
a = b;

This is the assignment operator for objects of class Vector. It is defined mainly to
enhance vectorization on CRAY computers.

double X(void) const;
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Symbolic notation: G e 2 Indicial notation: a,
Sample code:

Vector a;

printf ("The X component of a is %f\n", a.X());

double Y (void) comnst;
Symbolic notation: a Indicial notation: a,
Sample code:

Vector a;

printf("The Y component of a is %f\n", a.¥());

double Z(void) const;
Symbolic notation: a e 2 Indicial notation: a,
Sample code:

Vector a;

printf ("TheZ component of a is %f\n", a.zZ());

void X(const double);

Symbolic notation: None Indicial notation: a, « s

Sample code:

Vector a;

a.X((2.); // set X component of a to 2.

void Y {(const double);

Symbolic notation: None Indicial notation: a, « s
Sample code:

Vector a;
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a.Y(2.); // set Y component of a to 2.

void Z(const double);

Symbolic notation: None Indicial notation: a,« s
Sample code:
Vector a;
a.z(2.); // set Z component of a to 2.

Provide access to the components of a vector. This is required chiefly for I/O but
is also a means for letting future classes work with vectors without requiring a
huge list of friend functions in the vector class definition. It does not violate the
idea of data abstraction, since nonprivileged functions must still access the com-
ponents of a vector through a functional interface.

2.1.3 Utility Functions

24

int fread(Vector&, FILE*);
int fwrite(const Vector, FILE*);
int fread(Vector*, int, FILE*);

int fwrite{const Vector*, const int, FILE*);

Sample code:

Vector a, b, c[2], d[5];
FILE* InFile, OutFile;
fread (a, InFile);

fread (c, 2, InFile);
fwrite (b, OQutFile);
fwrite (d, 5, OutFilej;

These overloads provide a convenient interface to the fread () and fwrite ()
library functions for binary input/output. The second version of each is intended
for arrays of vectors (e.g., Vector c[2]; declares an array of two vectors).

These functions were written to be as consistent as possible with the standard
fread() and fwrite () functions. Thus, they are friends rather than member
functions, and the integer returned is the number of objects read or written.
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2.2 class Tensor

This class represents general Cartesian 2nd-order tensors. In the 2-D version, the off-diag-
onal z terms A ,, A,,, Ay, and A,, are omitted. The diagonal z term, A4, is needed in 2-D
finite element codes.

Symbolic notation: A Indicial notation: A,

2.2.1 Private Data Members

double xx; xx component of tensor (4,,)
double xy; Xy component of tensor (4,,)
double xz; xz component of tensor (4,,)
double yx; yz component of tensor (4,,)
double yy; yy component of tensor (A,,)
double yz; yz component of tensor (A,;)
double zx; zx component of tensor (4,,)
double zy; zy component of tensor (4,,)
double zz; zz component of tensor (4,,)

2.2.2 Special Member Functions

Tensor (void) ;

Sample code:

Tensor a; // Declare an uninitialized
// tensor.

Default constructor for instances of the Tensor class.

Tensor (const double, const double, const double, const
double, const double, const double, const double,
const double, const double);

Sample code:
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Tensor a(2., 3., 5.,
4., 6., 4.,
1., 9., 11.);

Construct a tensor with the given components. The arguments corresponding to
off-diagonal z terms are omitted in the 2-D version.

Tensor {const Tensor&) ;

Sample code:

Tensor a;

Tensor b = a; // Construct and initialize

This is the copy constructor for objects of class Tensor. It is defined mainly to en-
hance vectorization on CRAY computers.

Tensor& operator=(const Tensor&) ;

Sample code:

Tensor a, b;
a = b;

This is the assignment operator for objects of class Tensor. It is defined mainly to
enhance vectorization on CRAY computers.

Tensor (const SymTensor) ;

Tensor {const AntiTensor) ;

Sample code:

SymTensor a;
AntiTensor b;
Tensor ¢ = a, d = b;

Convert a symmetric or antisymmetric tensor to full tensor representation. These
operators become standard conversions that the compiler invokes implicitly
where needed. However, most operators are explicitly defined for mixed tensor
types, since this is more efficient.
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These conversions are somewhat dangerous, since useless operations such as
Trans (SymTensor) or Tr (Ant iTensor) will be accepted by the compiler.
The worst consequence of permitting these conversions is that operations such as
Inverse (AntiTensor) will be attempted and result in a singular matrix er-
ror. The RHALE++ development team felt that, since these conversions are so
natural, they should be included in PHYSLIB in spite of the potential dangers.

Tensor& operator=(const SymTensor) ;
Tensor& operator=(const AntiTensor) ;
Sample code:

SymTensor a;

AntiTensor b;

Tensor c, d;

c = a;

d = b;

Assign a symmetric or antisymmetric tensor value to a preexisting tensor vari-
able. If these operations were not defined, the compiler would call the conversion
constructors defined above and assign the result, which is less efficient than as-
signing the values directly.

double XX (void) const;

Symbolic notation: A% Indicial notation: A,
Sample code:

Tensor A;

printf ("The XX component of A is %f", A.XX());

double XY (void) const;

Symbolic notation: Ay Indicial notation: A,
Sample code:

Tensor Aj;
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printf ("The XY component of A is %f",

double XZ(void) const;

Symbolic notation: %A Indicial notation: A,

Sample code:

Tensor A;

printf ("The XZ component of A is %f*,

double YX(void) const;

Symbolic notation: yA % Indicial notation: A,,

Sample code:

Tensor A;

printf ("The YX component of A is %f",

double YY(void) const;
Symbolic notation: 3A§ Indicial notation: A,
Sample code:

Tensor A;

printf ("The YY component of A is %f",

double YZ(void) const;

Symbolic notation: A Indicial notation: A.,

Sample code:

Tensor A;

printf (*"The YZ component of A is %f",

double ZX(void) const;

28

AXY());

A.XZ());

A YX());

A.YY()):

AYZ());



The PHYSLIB Library

Symbolic notation: 2A % Indicial notation: Ay

Sample code:

Tensor A;

printf ("The ZX component of A is %f", A.ZX());

double ZY(void) const;
Symbolic notation: A% Indicial notation: Ay,
Sample code:

Tensor A;

printf ("The 2ZY component of A is %f", A.ZY());

double ZZ(void) const;

Symbolic notation: :A% Indicial notation: Ay,

Sample code:

Tensor A;

printf ("The ZZ component of A is %f", A.ZZ());

vold XX {const double) ;

Symbolic notation: None Indicial notation: A, « s
Sample code:
Tensor A4;
A.XX(3.); // Set XX component of A to 3.

void XY (const double);

Symbolic notation: None Indicial notation: A\, « s

Sample code:

Tensor A;
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AXY(3.); // Set XY component of A to 3.

void XZ (const double);

Symbolic notation: None Indicial notation: Ay« s
Sample code:
Tensor A;
A.XZ(3.); // Set XZ component of A to 3.

void YX(const double);

Symbolic notation: None Indicial notation: A, « s
Sample code:
Tensor A;
A.YX(3.); // Set YX component of A to 3.

void YY (const double);

Symbolic notation: None Indicial notation: A,, « s

Sample code:

Tensor A;

A.YY(3.); // Set YY component of A to 3.

void YZ{const double);

Symbolic notation: None Indicial notation: A,; « s
Sample code:
Tensor A;

A.YZ(3.); // Set YZ component of A to 3.

void ZX(const double);

Symbolic notation: None Indicial notation: Ay « s
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Sample code:

Tensor A;

A.ZX(3.); // Set ZX component of A to 3.

void ZY{(const double);

Symbolic notation: None Indicial notation: A,, « s
Sample code:
Tensor A;
A.ZY(3.); // Set ZY component of A to 3.

void ZZ (const double);

Symbolic notation: None Indicial notation: Ay, « s
Sample code:
Tensor A;
A.Z2Z(3.); // Set 727 component of A to 3.

Provide access to components of a tensor through a functional interface. The
functions corresponding to off-diagonal z terms do not exist in the 2-D version of
the library, since these components always vanish in 2-D finite element codes.

2.2.3 Utility Functions

int fread(Tensor&, FILE*);

int fwrite(const Tensor, FILE*);

int fread(Tensor*, int, FILE*);

int fwrite(const Tensor*, const int, FILE*);
Sample code:

Tensor a, b, c[2], 4[5];
FILE* InFile, OutFile;
fread (a, InFile);

fread (c, 2, InFile);
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fwrite (b, OutFile);
fwrite (d, 5, OutFile);

These overloads provide a convenient interface to the fread () and fwrite ()
library functions for binary input/output.

These functions were written to be as consistent as possible with the standard
fread() and fwrite () functions. Thus, they are friends rather than member
functions, and the integer returned is the number of objects read or written,

2.3 class SymTensor

This class represents symmetric tensors. By providing a separate representation of sym-
metric tensors, we save both memory and computation time, since a symmetric tensor has
fewer independent components. Since symmetric tensor are simply a special case of gen-
eral tensors, they share the same notation and operations.

Symbolic notation: A Indicial notation: A;

2.3.1 Private Data Members

double xx; xx component of a symmetric tensor (4,,)
double xy; Xy component of a symmetric tensor (A, = A,;)
double xz; xz component of a symmetric tensor (4,; = 4,)
double yy: yy component of a symmetric tensor (4,,)
double yz; yz component of a symmetric tensor (4,; = A,,)
double zz; zz component of a symmetric tensor (4,;)

2.3.2 Special Member Functions

SymTensor (void) ;
Sample code:

SymTensor a; // Construct an uninitialized

// SymTensor.

32



The PHYSLIB Library

Default constructor for instances of the class SymTensor.

SymTensor (const double, const double, const double,
conzt double, const double, const double);

Sample code:
SymTensor a(l., 5., 3.,
4., 6.,
5.):

Construct a symmetric tensor with the given components. The arguments corre-
sponding to off-diagonal z components are omitted in the 2-D version.

SymTensor (const SymTensor&) ;
Sample code:

SymTensor a;
SymTensor b = a; // Construct and initialize

This is the copy constructor for objects of class SymTensor. It is defined mainly
to enhance vectorization on CRAY computers.

SymTensor& operator=(const SymTensork);

Sample code:

SymTensor a, b;

a = b;

This is the assignment operator for objects of class SymTensor. It is defined
mainly to enhance vectorization on CRAY computers.

double XX (void) const;

Symbolic notation: $A % Indicial notation: A,

Sample code:
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SymTensor A;

printf (*The XX component of A is %f", A.XX());

double XY (void) const;
Symbolic notation: A3 Indicial notation: A,,
Sample code:

SymTensor A;
printf ("The XY component of A is %£f", A.XY());

double XZ(void) const;

Symbolic notation: A2 Indicial notation: A,

Sample code:

SymTensor A;
printf ("The XZ component of A is %f", A.XZ());

double YY(void) const;
Symbolic notation: A9 Indicial notation: Ay,
Sample code:

SymTensor A;
printf ("The YY component of A is %f", A.YY());

double YZ(void) const;
Symbolic notation: A7 Indicial notation: A,,
Sample code:

SymTensor A;

printf ("The YZ component of A is %f", A.YZ());
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double ZZ(void) const;

Symbolic notation: A% Indicial notation: Ay
Sample code:

SymTensor A;

printf ("The ZZ component of A is %£f", A.ZZ());

void XX (const double) ;

Symbolic notation: None Indicial notation: A, « s

Sample code:

SymTensor A;

A.XX(3.); // Set XX component of A to 3.

void XY {const double);

Symbolic notation: None Indicial notation: A, < s

Sample code:

SymTensor A;

A.XY(3.); // Set XY component of A to 3.

void XZ (const double);

Symbolic notation: None Indicial notation: A, « s
Sample code:

SymTensor A;

A.XZ(3.); // Set XZ component of A to 3.

void YY{(const double);

Symbolic notation: None Indicial notation: Ay, « s

Sample code:

35



The PHYSLIB Library

SymTensor A;

A.YY(3.); // Set YY component of A to 3.

void YZ(const double);

Symbolic notation: None Indicial notation: Ay, s

Sample code:

SymTensor A;

A.YZ(3.); // Set YZ component of A to 3.

void ZZ(const double);

Symbolic notation: None Indicial notation: Ay« s

Sample code:

SymTensor A;

A.27Z(3.); // Set ZZ component of A to 3.

Provide access to components of a symmetric tensor through a functional inter-
face. The functions corresponding to off-diagonal z terms do not exist in the 2-D
version of the library, since these components always vanish in 2-D finite ele-

ment codes.

2.3.3 Utility Functions

int fread(SymTensor&, FILE*);

int fwrite(const SymTensor, FILE*);

int fread(SymTensor*, int, FILE*);

int fwrite(const SymTensor*, const int,

Sample code:

SymTensor a, b, c[2], d[5];
FILE* InFile, OutFile;

fread (a, InFile);
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fread (c, 2, InFile);
fwrite (b, OutFile);
fwrite (d, 5, OutFile);

These overloads provide a convenient interface to the fread () and fwrite ()
library functions for binary input/output.

These functions were written to be as consistent as possible with the standard
fread () and fwrite() functions. Thus, they are friends rather than member
functions, and the integer returned is the number of objects read or written.

2.4 class AntiTensor

This class represents antisymmetric tensors. By providing a separate representation, we
save quite a lot of memory and computation time. Since antisymmetric tensors are a spe-
cial case of general tensors, the notation and operators are identical.

Symbolic notation: A Indicial notation: A

2.4.1 Private Data Members

double xy; xy component of the tensor (A4,, = —-4,,)
double xz; xz component of the tensor (4,, = -A;)
double yz; yz component of the tensor (4,; = -A3)

24.2 Special Member Functions

AntiTensor (void) ;

Sample code:

AntiTensor A: // Construct an uninitialized
// AntiTensor

Default constructor for instances of the class AntiTensor.

AntiTensor (const double, const double, const double);
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Sample code:

AntiTensor A(-2., -3., -1.);

Construct an antisymmetric tensor with the given components. The second and
third arguments are omitted in 3-D.

AntiTensor (const AntiTensor&) ;

Sample code:

AntiTensor a;
AntiTensor b = a; // Construct and initialize

This is the copy constructor for objects of class AntiTensor. It is defined mainly
to enhance vectorization on CRAY computers.

AntiTensor& operator={const AntiTensor&) ;

Sample code:

AntiTensor a, b;
a = b;

This is the assignment operator for objects of class AntiTensor. It is defined
mainly to enhance vectorization on CRAY computers.

double XY (void) const;

Symbolic notation: 2A 3 Indicial notation: A,,
Sample code:

AntiTensor A;

printf ("The XY component of A is %f", A.XY());

double XZ{void) const;

Symbolic notation: 3A? Indicial notation: A,,

Sample code:
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AntiTensor A;

printf ("The XZ component of A is %f", A.XZ());

double YZ(void) const;

Symbolic notation: A2 Indicial notation: A,,
Sample code:

AntiTensor A;

printf ("The YZ component of A is %f", A.YZ());

void XY (const double};

Symbolic notation: None Indicial notation: A, < s
Sample code:

AntiTensor A;

A.XY(3.); // Set XY component of A to 3.

void XZ(const double);

Symbolic notation: None Indicial notation: A5« s
Sample code:

SymTensor A;

A.XZ(3.); // Set XZ component of A to 3.

void YZ(const double);

Symbolic notation: None Indicial notation: A, < s
Sample code:

AntiTensor A;

A.YZ(3.); // Set YZ component of A to 3.

39



The PHYSLIB Library

Provide access to components of an antisymmetric tensor through a functional in-
terface. The functions corresponding to off-diagonal z terms do not exist in the 2-
D version of the library, since these components always vanish in 2-D finite ele-
ment codes.

2.4.3 Utility Functions

40

int
int
int

int

fread (AntiTensor&, FILE*);
fwrite(const AntiTensor, FILE*);

fread (AntiTensor*, 1int, FILE*);

fwrite(const AntiTensor*, const int,

Sample code:

AntiTensor a, b, c[2], d[5];
FILE* InFile, OutFile;

fread (a, InFile);

fread (c, 2, InFile);

fwrite (b, QutFile);

fwrite (d, 5, OutFile);

FILE*) ;

These overloads provide a convenient interface to the fread () and fwrite()
library functions for binary input/output.

These functions were written to be as consistent as possible with the standard
fread() and fwrite () functions. Thus, they are friends rather than member
functions, and the integer returned is the number of objects read or written.
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2.5 Operator Overload Functions

Vector operator-(void) const;

Symbolic notation: —a Indicial notation: -u,

Sample code:
Vector a, b;
a = -b;

Return the opposite of a vector.

Tensor operator- (void) const;
SymTensor operator-{(void) const;
AntiTensor operator-(void) const;
Symbolic notation: -A Indicial notation: -A;;
Sample code:

Tensor A, B;

A = -B;

Retarn the opposite of a tensor.

Vector operator*{const Vector, const double);
Vector operator*(const double, const Vector);
Symbolic notation: ac Indicial notation: a;,c
Sample code:
Vector a, b;
double c¢;

a=>b * c;

Return the product of a scalar and a vector. This operation commutes (as can be
seen from its indicial representation) but C++ makes no assumptions about com-
mutivity of operations: hence, both orderings must be defined. C++ does assume
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the usual rules of associativity for overloaded operators (thus a*b*c means

(a*b) *c or (Zeb)2).

Vector& operator*=(const double};

Symbolic notation: a « ac Indicial notation: a; < a,
Sample code:

Vector a;
double c;
a *= c;

Replace a vector by its product with a scalar.

Vector operator/(const Vector, const double);

Symbolic notation: a/c Indicial notation: a,/c

Sample code:

Vector a, b;
double c;
a = b/c;

Return the quotient of a vector with a scalar. The case ¢ = 0 results in a divide-
by-zero error, which is handled differently on different computers.

Vector& operator/={(const double);

Symbolic notation: 4« a/c Indicial notation: a; < a,/c

Sample code:

Vector aj
double c;
a /= c;

Replace a vector by its quotient with a scalar. The case ¢ = 0 results in a divide-
by-zero error, which is handled differently on different computers.
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double operator* (const Vector, const Vector);
Symbolic notation: i b Indicial notation: ab,
Sumple code:
Vector a, b;
double c;
cC = a * b;

Return the dot or inner product of two vectors.

Tensor operator%(const Vector, const Vector);

Symbolic notation: & ® b Indicial notation: ab;

Sample code:

Vector a, b;
Tensor cC;
c =a % b;

Return the tensor or outer product of two vectors. The operator ‘%’ represents the
modulo operation when applied to integers. It was selected to represent the outer
product of vectors because the compiler assigns it the same precedence as multi-
plication.

Vector operator+ (const Vector, const Vector);

Symbolic notation: a+b Indicial notation: a,+b,

Sample code:
Vector a, b, c;
a=>b + c;

Return the sum of two vectors.
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Vector& operator+=(const Vector);
Symbolic notation: &« a+b  Indicial notation: a, < a; + b,
Sample code:

Vector a, b;

a += b;

Replace a vector by its sum with another vector.

Vector operator-{(const Vector, const Vector);
Symbolic notation: & - b Indicial notation: a; - b,
Sample code:

Vector a, b, c;
a=>b - c;

Return the difference of two vectors.

Vector& operator-={(const Vector);

Symbolic notation: 4« a-b  Indicial notation: a, < a,— b

Sample code:

Vector a, b;
a—:b;

Replace a vector by its difference with a vector.

Tensor operator* (const Tensor, const double);
SymTensor operator* {const SymTensor, const double);
AntiTensor operator* {(const AntiTensor, const double);
Tensor operator* (const double, const Tensor);
SymTensor operator* (const double, const SymTensor) ;

AntiTensor operator* (const double, const AntiTensor) ;
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Symbolic notation: Ac Indicial notation: Ac
Sample code:

Tensor A, B;
double c;
B =2 * ¢c;

Return the product of a tensor with a scalar.

Tensor& operator*=(const double);
SymTensor& operator*=(const double);
AntiTensor& operator*=(const double);

Symbolic notation: A « Ac  Indicial notation: A; « A;c
Sample code:

Tensor A;
double c¢;
A *= c;

Replace a tensor by its product with a scalar.

Tensor operator/(const Tensor, const double);
SymTensor operator/(const SymTensor, const double);
AntiTensor operator/{const AntiTensor, const double);

Symbolic notation: A /c Indicial notation: A i€

Sample code:

Tensor A, B;
double c;
B = A/c;

Return the quotient of a tensor with a scalar. The case ¢ = 0 results in a divide-
by-zero error, which is handled differently by different computers.
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Tensor operator/=(const double};
SymTensor& operator/=(const double);
AntiTensor& operator/=(const double);

Symbolic notation: A < A/c  Indicial notation: A;«A,/c
Sample code:

Tensor A;

double c;

A /= c;

Replace a tensor by its quotient with a scalar. The case ¢ = 0 results in a divide-
by-zero error, which is handled differently by different computers.

Vector operator* (const Tensor, const Vector);
Vector operator* {const AntiTensor, const Vector);
Vector operator* (const SymTensor, const Vector);
Symbolic notation: Ab Indicial notation: Ab,
Sample code:
Tensor A;
Vector b, c;
cC = A * Db;
Return the result of left-multiplying a vector by a tensor. There are three cases,

corresponding to the three varieties of tensor implemented in PHYSLIB; all are
identical in notation and usage, however.

Vector operator* (const Vector, const Tensor) ;
Vector operator* (const Vector, const AntiTensor);
Vector operator* (const Vector, const SymTensor) ;

Symbolic notation: aB Indicial notation: a;B;

Sample code:
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Vector a;
Tensor b, c;
c = a * b;

Return the result of right-multiplying a vector by a tensor.

Tensor operator* (const Tensor, const Tensor) ;

Tensor operator* (const SymTensor, const Tensor) ;
Tensor operator* (const Tensor, const SymTensor) ;
Tensor operator* (const SymTensor, const SymTensor) ;
Tensor operator* (const AntiTensor, const Tensor) ;
Tensor operator* (const Tensor, const AntiTensor) ;
Tensor operator* (const AntiTensor, const SymTensor) ;
Tensor operator* (const SymTensor, const AntiTensor) ;

Symbolic notation: AB Indicial notation: A;B;
Sample code:

Tensor A, B, C;
C = A * B;

Return the product of a tensor with a tensor.

Tensor operator+{const Tensor, const Tensor):;

Tensor operator+ (const SymTensor, const Tensor);
Tensor operator+ (const Tensor, const SymTensor) ;
SymTensor operator+(const SymTensor, const SymTensor);
Tensor operator+(const AntiTensor, const Tensor) ;
Tensor operator+(const Tensor, const AntiTensor);
Tensor operator+(const AntiTensor, const SymTensor) ;
Tensor operator+{(const SymTensor, const AntiTensor) ;

AntiTensor operator+(const AntiTensor, const AntiTen-
sor) ;
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Symbolic notation: A +B Indicial notation: A;+B,;
Sample code:

Tensor A, B, C;
C = A + B;

Return the sum of two tensors.

Tensor& operator+=(const Tensor) ;

Tensor& operator+={(const SymTensor) ;
SymTensor& operator+=(const SymTensor) ;
Tensor& operator+=(const AntiTensor) ;
AntiTensor& operator+={const AntiTensor);

Symbolic notation: A « A +B Indicial notation: A;; < A,;+B;
Sample code:

Tensor A, B;
A += B;

Replace a tensor by its sum with another tensor.

Tensor operator-{(const Tensor, const Tensor);

Tensor operator-(const SymTensor, const Tensor);
Tensor operator- (const Tensor, const SymTensor) ;
SymTensor operator-(const SymTensor, const “ymTensor);
Tensor operator-(const AntiTensor, const ‘tensor);
Tensor operator-(const Tensor, :onst AntiTensor);
Tensor operator-(const AntiTensor, const SymTensor);
Tensor operator-{(const SymTensor, const AniiTeiiior);

AntiTensor operator-{(const AntiTeusor, const AntiTen-
sor) ;

Symbolic notation: A -B [ndicial notation: A;;~ 8B,
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Sample code:

Tensor A, B, C;
C = A - B;

Return the difference of two tensors.

Tensor& operator-=(const Tensor);

Tensor& operator-=(const SymTensor) ;
SymTensor& operator-=(const SymTensor);
Tensor& operator-={(const AntiTensor);
AntiTensor& operator-=(const AntiTensor);

Symbolic notation: A «— A ~B Indicial notation: A;« A;;-B;
Sample code:

Tensor A, B;
A -= B;

Replace a tensor by its difference with another tensor.
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2.6 Methods

Vector Cross(const Vector, const Vector) ;

Symbolic notation: axb  Indicial notation: e_ab,

Sample code:

Vector a, b, c;
c = Cross(a, b);

Vector or cross product of two vectors. The symbol e, is the permutation sym-

bol, which is O if any of the i, j, or k are equal, 1 if they are an even permutation
of the sequence 1, 2, 3, and -1 if they are an odd permutation of the sequence 1, 2,
3. For example, €,,, = 0; €,,, = 1;and ¢,,, = —1. The cross product is distributive

and associative but not commutative.

Vector Dual (const Tensor) ;
Symbolic notation: Dual(A) Indicial notation: e A

Sample code:

Tensor A;
Vector b;
b = Dual(a);
Any tensor A can be split into a symmetric part % (A +A") and an antisymmetric

part %(A —A"). The dual of a tensor is a vector which depends uniquely on its
antisymmetric part.

AntiTensor Dual (const Vector);
Symbolic notation: Dual (2) Indicial notation: €,xde
Sample code:

Vector a;
AntiTensor B;

B = Dual(a);
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A

Dual of a vector. It can be proved that Dual(Dual(@)) = 2a. The concept of the dual

is closely related to the cross product, since bDual @) = i x b.

double Norm(const Vector) ;

Symbolic notation: |al Indicial notation: Ja,a,
Sample code:

Vector a;
double b;
b = Norm(a);

Returns the magnitude or norm of a vector. This is calculated as the square root
of the dot product of the vector with itself.

double Norm(const Tensor) ;

double Norm(const SymTensor) ;

double Norm{const AntiTensor) ;

Symbolic notation: |A| Indicial notation: JA;A,

Sample code:

Tensor A;
double c¢;
c = Norm(A);

Returns the norm of a tensor. This is calculated as the square root of the scalar
product of the tensor with itself.

double Det (const Tensor) ;

double Det (const SymTensor) ;

Symbolic notation: det [A] Indicial notation: Le

6 il_kelmnAilAijkn

Sample code:

Tensor A;
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double c;
c = Det(A);

Determinant of a tensor. It is always zero for an antisymmetric tensor.

Tensor Inverse(const Tensor) ;

SymTensor Inverse(const SymTensor) ;
Symbolic notation: A™
Sample code:

Tensor A, B;
B = Inverse(A);

Inverse of a tensor. If the tensor is singular, a divide-by-zero error will result
(which may be ignored on machines using the IEEE floating point standard). An-
tisymmetric tensors are always singular.

double Tr (const Tensor) ;
double Tr(const SymTensor) ;
Symbolic notation: TrA Indicial notation: A,

Sample code:

Tensor A;
double c;
c = Tr(A);

Trace of a tensor. The trace of an antisymmetric tensor is always zero.

Tensor Trans (const Tensor) ;
Symbolic notation: A" Indicial notation: 4
Sample code:

Tensor A, B;

B = Trans(A);
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Transpose of a tensor. By definition, the transpose of a symmetric tensor is the

tensor, while the transpose of an antisymmetric tensor is the opposite of the ten-
SOT.

SymTensor Sym(const Tensor);

Symbolic notation: ,—i (A + A" Indicial notation: % (A;+A;)

Sample code:

Tensor A, B;
B = Sym(A);

Symmetric part of a tensor.

AntiTensor Anti (const Tensor) ;
Symbolic notation: %(A - A"y Indicial notation: %(A,-,-—Aj,-)

Sample code:

Tensor A, B;
B = Anti(A);

Antisymmetric part of a tensor.

double Colon(const Tensor, const Tensor);
double Colon(const Tensor, const SymTensor) ;
double Colon(const SymTensor, const Tensor);
double Colon(const SymTensor, const SymTensor)}
double Colon(const Tensor, const AntiTensor);
double Colon(const AntiTensor, const Tensor) ;
double Colon{const AntiTensor, const AntiTensor);
Symbolic notation: A:B Indicial notation: A;B,;

Sample code:

[
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Tensor A, B;
double c;

¢ = Colon(a, B);

Inner or scalar product of two tensor, also written Tr(A"B). The scalar product of
a symmetric and an antisymmetric tensor is always zero.

Tensor Deviator (const Tensor) ;

SymTensor Deviator (const SymTensor) ;

Symbolic notation: A — %Tr(A)l Indicial notation: A;;- %AHSU

Sample code:
Tensor A, B;

B = Deviator(A);

Deviatoric part of a tensor. The tensor 1 is the identity tensor, which is the unique
tensor that transforms any vector into itself and whose components are represent-

ed by the Kronecker delta 8. The deviator of an antisymmetric tensor is the ten-
sor itself.

double It (const Tensork) ;
double It (const SymTensor&) ;
double It (const AntiTensor&);
Symbolic notation: 1, = Tr(A) Indicial notation: A,

Sample code:

Tensor A;

double c;

c = It(a);
double IIt (const Tensor&) ;
double IIt (const SymTensoré&);

double IIt(const AntiTensor&) ;
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Symbolic notation: 11, = %(IAIZ— (TrA)?) Indicial notation: %(A,-jA,-j— AwD

Sample code:
Tensor A;

double c¢;

c = IIt(A);

double IIIt(const Tensor&) ;
double IIIt(const SymTensoré&) ;

double IIIt(const AntiTensor&) ;

Symbolic notation: 1, = DetA  Indicial notation: éeijke,mnA,.,Aijkn

Sample code:
Tensor A;
double c;

c = IITt(A);

Scalar invariants of a tensor. These are the coefficients appearing in the charac-
teristic equation of a tensor, They are the only three independent scalars that can
be formed in a frame-independent manner from a single tensor; all other scalars
that can be formed from a tensor are functions of the scalar invariants.

The first invariant is a synonym for the trace; the third is a synonym for the deter-
minant. Only the second invariant is nonzero for an antisymmetric tensor.

The characteristic equation itself takes the form
A I - A-1, =0
RN T AL AT ¢ = 29)
and its roots are the principal values of the tensor.

Tensor Eigen (const SymTensor, Vector&) ;

This function returns the orthonormal tensor whose columns are the eigenvectors
of the given symmetric matrix. The principal values are placed in the vector spec-
ified by the second argument. Thus, if

A = Eigen(B, ¢)) (30
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then

D =ATBA 3D

is a diagonal tensor whose elements are given by the vector e,.

2.7 Predefined Constants

56

const int DIMENSION = 3;

This is an integer constant giving the dimensionality of the library. It is defined to
be equal to 2 if the 2-D version of the library is being used.

extern
extern
extern

extern

const Vector ZeroVector;
const Tensor ZeroTensor;
const AntiTensor ZeroAntiTensor;

const SymTensor ZeroSymTensor;

These are objects of the various classes whose components are all zero.

extern

extern

const Tensor IdentityTensor;

const SymTensor IdentitySymTensor;

These are objects of the given classes corresponding to the identity tensor, which
is the tensor that transforms any vector into itself. The off-diagonal components
are zero and the diagonal components are equal to one in any coordinate system.
The identity tensor is symmetric and is given in both symmetric and full tensor
representations.
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3. Using the PHYSLIB classes

The classes defined in PHYSLIB are essentially new arithmetic types analogous to the
predefined int, float, and double types. Their use is illustrated by the program
fragment below:

#include “physlib.h” // The example is 3-D

VAP

const Tensor One(l., 0., 0.,

Tensor GradVel; // Velocity gradient
SymTensor Deformation, deformation, Stretch, Stress;
AntiTensor W, Omega;

Vector omega;

/* .0 %/

Deformation = Sym({Gradvel) ;
W = Anti(GradVel);

/* Integrate rotation and stretch tensors */

omega = 2.*Inverse(Tr(Stretch)*One - Stretch) *

Dual (GradVel*Stretch);

Omega = 0.5*Dual {(omega) ;

Rotation = Inverse(One - 0.5*delT*Omega) * (One +
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0.5*delT*Omega) *Rotation;

Stretch += Sym(delT* (Gradvel*Stretch-Stretch*Omega)) ;

/* Calculate unrotated deformation and determine rotated
stress */

deformation = Sym(Trans (Rotation) *Deformation*

Rotation);

Stress = Sym(Rotation *

ComputeStress (deformation, delT) * Trans(Rotation));

This particular program fragment is taken from the internal forces routine in RHALE++.
The velocity gradient is decomposed into its rotation and stretch rate components, the ro-
tation and stretch are updated to the new time, and the deformation rate is rotated to the
material configuration for the calculation of the new stress (which is done in the user-de-
fined routine SymTensor ComputeStress (SymTensor&, double)). The new
stress is then rotated back to the laboratory configuration.

3.1 Useless Operations

Certain operations are mathematically well-defined but useless. For example, the trace or
the determinant of an antisymmetric tensor is well-defined but trivially zero. The trans-
pose of a symmetric tensor is itself. These operations are not explicitly defined in
PHYSLIB, but if the programmer were to write code such as

Antitensor a;

double b;
/* ... %/
b = Tr(a);

the code would compile and run normally. The compiler recognizes that there is a standard
conversion from Ant i Tensor to Tensor. This conversion is called for a and the result
is passed to Tr (Tensor), which returns the cormrect value of 0.

Obviously, programmers should avoid such useless constructs, since they needlessly con-

sume time and memory. Some users may wish to comment out the standard conversions
responsible for permitting useless code.
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Conclusion

PHYSLIB defines vector and tensor classes that are fundamental to the RHALE++ pro-
gramming effort, but which are general and should be useful in many scientific applica-
tions.

These classes are fundamental components of field classes that represent vector and tensor
fields ot various types relevant to finite element calculations. These are essentially smart
arrays of vectors or tensors with corresponding operations and methods. The arrays are de-
fined on a domain represented by a mesh class. Calculus operations such as divergence or
gradient are defined in these libraries.

These tield classes which utilize the PHYSLIB classes are the subject of a future docu-
ment.
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